Bewertete Körper Blatt 11 Letztes Blatt!

Abgabe: 01.02.2022

Aufgabe 1 (4 Punkte).

- (a) Bestimme den Grad der Körpererweiterung $\mathbb{Q}_5(i)/\mathbb{Q}_5$, wobei i eine quadratische Wurzel von -1 ist (in einem algebraischen Abschluss $\mathbb{Q}_5^{\text{alg}}$ von \mathbb{Q}_5).
- (b) Bestimme die ersten drei Koeffizienten der 5-adischen Darstellungen von i und -i.

Aufgabe 2 (3 Punkte).

Sei $K \subset N$ eine endliche Galois Erweiterung bewerteter Körper bezüglich der Bewertung ν von N. Gegeben ein Element a aus N derart, dass $\nu(a) \neq \nu(\sigma(a))$ für jedes Galois Konjugat $\sigma(a) \neq a$ aus N, zeige, dass es ein b aus K mit $\nu(a) = \nu(b)$ gibt.

Aufgabe 3 (3 Punkte).

- (a) Für p Primzahl seien $a = \sum_{n \in \mathbb{N}} a_n$ und $b = \sum_{n \in \mathbb{N}} b_n$ konvergierende Reihen in \mathbb{Q}_p . Zeige, dass $\sum_{n \in \mathbb{N}} c_n$ zum Produkt $a \cdot b$ konvergiert, wobei $c_n = \sum_{k=0}^n a_k b_{n-k}$.
- (b) In \mathbb{R} ist die Reihe

$$a = \sum_{n \in \mathbb{N}} a_n \text{ mit } a_n = \frac{(-1)^n}{\sqrt{n+1}}$$

konvergent. Für $b_n = a_n$, ist die Reihe $\sum_{n \in \mathbb{N}} c_n$ auch konvergent?

HINWEIS: $\sqrt{xy} \le \frac{x+y}{2}$.

Aufgabe 4 (10 Punkte). Sei $p \neq 2$ eine Primzahl und η eine primitive p-te Einheitswurzel in \mathbb{Q}_p^{alg} . Bezeichne mit ν_p die eindeutige Fortsetzung der p-adischen Bewertung auf dem algebraischen Abschluss.

(a) Ist die Erweiterung $\mathbb{Q}_p(\eta)/\mathbb{Q}_p$ Galois? Zeige mit Hilfe der Aufgabe 2 (c) aus dem Blatt 10, dass die Norm

$$N_{\mathbb{Q}_p(\eta)/\mathbb{Q}_p}(\eta-1) = \prod_{\sigma \in Aut(\mathbb{Q}_p(\eta)/\mathbb{Q}_p)} \sigma(\eta-1) = p.$$

Es folgt, dass $\nu_p(1-\eta) = \frac{1}{p-1} > 0$.

HINWEIS: $\nu_p \circ \sigma = \nu_p$ für jedes σ aus $\operatorname{Gal}(\mathbb{Q}_p^{\operatorname{alg}}/\mathbb{Q}_p)$.

(b) Zeige, dass

$$(1-\eta)^{p-1}\frac{1-\eta^2}{1-\eta}\dots\frac{1-\eta^{p-1}}{1-\eta}=p.$$

Insbesondere ist $u = -\frac{1-\eta^2}{1-\eta} \dots \frac{1-\eta^{p-1}}{1-\eta}$ eine Einheit im ganzen Abschluss R von \mathbb{Z}_p in $\mathbb{Q}_p(\eta)$.

Bitte wenden!!

Abgabe der Übungsblätter in den Briefkasten 3.30 im UG der Ernst-Zermelo-Strasse 1. Die Übungsblätter müssen bis 15 Uhr am jeweils angegebenen Abgabedatum eingeworfen werden. Das Blatt kann zu zweit eingereicht werden. (c) Der Wilson'sche Satz besagt, dass $(p-1)! \equiv -1 \mod p$. Schließe daraus, dass die Einheit u kongruent zu 1 ist.

HINWEIS:
$$\frac{1-\eta^k}{1-\eta} = 1 + \eta + \dots + \eta^{k-1}$$
.

- (d) Zeige mit Hilfe des henselschen Lemmas, dass $u^{1/p-1}$ auch im ganzen Abschluss R liegt. Es folgt aus (b), dass jede primitive (p-1)-te Wurzel p-1/p von p-1/p von p-1/p bereits in $\mathbb{Q}_p(\eta)$ liegt.
- (e) Mit Hilfe der Fundamentalungleichung berechne den Verzweigungsindex sowie den Relativgrad der Erweiterung $\mathbb{Q}_p(\sqrt[p-1]{-p})/\mathbb{Q}_p$. Ist die von ν_p induzierte Bewertung auf $\mathbb{Q}_p(\sqrt[p-1]{-p})$ diskret?